
I

PubI. Math. Debrecen

68lL-2 (2006), 139-159

Integral inequalities for concave functions

By SORINA BARZA (Karlstad) and CONSTANTIN P. NICULESCU (Craiova)

Abstract. The aim of this paper is to extend to the context of several vari-

ables a number of results related to the Favard-Berwald inequalities.

1. Introduction

The aim of this paper is to prove extensions and refinements of some

integral inequalities for concave functions of several variables, that is, for

those real-valued functions / defined on convex subsets K of IR' such that

/((1 - .\)r + )s) > (t -.1)/(r) + l/(s)
for all n,A € K and all ,\ e [0,1]. Thefollowingexamples showthat the

class of concave functions covers a large spectrum of important functions:

(1) ("r, ...,rn) + (rp2...*n)t/", on the positive orthant

Rt : {("t,. ..,rn) I "t,...,r,, 
) 0} ;

this example extends to.Lp/k,where e6 is the k-th elementary symmet-

ric function of n variables (L < k 1n),

et:ltIltZ+...*In
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ez:\r*i
i<j

en:IlI2...fin.

(2) (q,...,rn) -- (4, - rl - ... - re,1r/n,

*T,> 4+ ... + rPn. Here p > 1.

(3) A ---+ (det A)L/", on the cone ^9|* of all n x n dimensional positively de-

fined matrices. The same is true for the functions (det A/det Arlt/("-k),
where ,4p denotes the principal submatrix of A formed by taking the
first k rows and k columns of A. Because every concave function is

also log-concave, we infer that log(detA) is also concave on ^5f*.
(4) A -r min;;o11=1(Ar,xl', on the the subset of all n x n dimensional

Hermitian matrices in M"(R). Letting

^*(/) 
> rj(a)

be the sequence of eigenvalues of A in decreasing order, this func-
tion associates to each matrix A its smallest eigenvalue ,\l(,4). More
generally, all functions A -- f*tal + ... + ll(A) are also concave.

For details, see the classical book of E, F. BpcxENBAcH and R. Bplt -
MAN [4]. While the one variable case has received a great deal of attention,
the literature concerning the peculiar properties of concave functions of
several variables is quite scarce. In fact, leaving out those results which
can be obtained by a change of sign from similar ones, for convex func-
tions, what remains counts few significant facts. The most prominent is
the following theorem due to L. Bnnwalo [5]:

Theorem l. Let K be a compact convex subset of lR" of positive
volume, and let f , ft,..., f^ : K -- IR". be continuous concave functions,
Then:

i) ?he function

on the subset of Ri where

'-' [( 
*,")t^ 

!.ratorf'"
is deqea,sing on (0, m);
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u : f (u). Flom this geometrical interpretation one can infer immediately
the equality case in (FB).

Advanced Calculus allows us to complement (FB) using the barycenter

of K, that is,
tfxK: 

v<l J*rdv'
In fact, as an easy consequence of Jensen's inequality we get

The conjunction of (FB) and (J) is a powerful device even in the l-dim-
ensional case. For example, they yields Stirli,ng's i'nequality,

&i l.r@)dv 
< r(rx).

('.#)

(J)

which works for every c > 0.

In this paper the inequality FB) will be the object of several gener-

alizations and refinements. In Section 2 we shall describe the connection

of (FB) and (J) with the topics of Choquet's theory. In Section 3 we shall

prove an extension of (FB), while in Section 4 we shall show that a re'
verse counterpart of Berwald's inequality (mentioned in Theorem 1) yields

a multiple (FB) inequality:

(MFB)

Here C(rz, rn) is a positive constant that depends only on rn and n. In the

case of functions of one real variable, the inequality (MFB) was previously

noticed by J. L. BRoNNnR and H. Alzpn [6], who in turn extended the

limiting case (for p,e + oo) of a result due to D. C. BeRNps l2l If p,q > I
and the functions / and g are non-negative, concave and continuous on

[a, b], then

('.l)' <e<(,*t)'*''',

it LfIi t'"') d'v 2 c(n'*)il'(ppr't"r)

tfb

-t
b-aJo f (r) s(r)d,x . wlll llo llgllo .
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ii) Fbr every positive constants a1,...,dm the following inequality
holds

t !,r(") rn(r)dv= ffffi _t (# | r-ot*)
Here dV denotes the volume measure in IR' (that is, the Lebesgue

measure) and l/<l denotes the volume of K.

Theorem L extends an earlier result due to J. Flvano [7], which asserts
that

(* |"u,,{,)o*)''' =6#^(* l"'rcto,)
for all continuous concave functions f , lo,b] --+ IRa and all parameters
p > 1. This complements a well known consequence of the Rogers-Hcilder
inequality,

*1"' r(r)d,r= (u-,4 l"' ,ot)0,)'''.

The limiting case (for p -' oo) of Favard's inequality gives us

l,pt, r(d s * l"' r(r)d'n.

Theorem 1 extends this conclusion to all continuous concave functions

f : K -r IR+ defined on an a,rbitrary compact convex subset K c R' of
positive volume:

(FB)

The inequality (FB) (called in what follows the Faaard-Berutald in-
equali,ty) has a very simple geometrical meaning: the volume of every
conoid of base K a.nd height /(c) (for every r e K) does not exceed the
volume of the cylindroid of base K, bounded above by the hypersurface

#sup/(r) = # f*iloor.
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Of course, an ineqirality like (MFB) is not possible without certain
restrictions. However, a rema.rkable result due to C. Vrssen [23] offers
the alternative of passing to subsequences. More precisely, if (X, E, p) is
a probability space md (.fr), is a sequence of random variables such that
01f. ( l and fykd.U ) o ) 0, then for every e > 0there exists a
subsequence, say (g,-)n, such that

f
J*n",...9n"d'P, 

> (1 -e)4"

for every string of indices nt 1 ... ( 2". See G. G. LoRBNrz [13] for a
nice combinatorial argument.

In the last section we discuss the generalization of our results to the
context of superha.rmonic functions.

2. The Farrard-Berwald inequality within Choquetts theory

In what follows we shall prove a number of estimates from above and
from below of the integral mean value

M(f): # l*r@)ou,

of a concave function / defined on a compact convex subset K c lR' of
positive volume. For each such function /,

"'$/(r) 
:,.g[*"f(z), (E)

where Ext K denotes the set of all extreme points of K. Recall that a point
r e K is said to be an extreme point of K if it admits no representation
of the form

t: (I -))r*.\u with u,u € K, u*u and A € (0,1).

The equatity (E) is a consequence of the celebrated Krein-Milman theorem,
which asserts that K is the closed convex hull of Ext/<.
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By (FB), applied io the non-negative concave function f -inf raq f (r),

we get

A Lf @)av. #sup/(z) + += ;2!*f 
(r),

so that, taking into account the relations (E) and (J), we arrive at the

following result:

Proposition 1. For every continuous concave function f defined on

a compact convex subset K c IR'' of positive volume,

#sup /(z) + #,egr,,xr @) s t, I.r @)d,v 3 r(nx)'

In the L-dimensional case, when K : la,bl, the result above represents

an improvement of the classical Hermite-Hadamard inequality,

,p+t9 r*l"o,t )0"=r(+) (HH)

See [17], [20], [21].
It is worth to notice that the left hand inequality in (HH) can be

strengthened as

!e#=*[,(#) .e+@]
r fb -. , . 

(LHH)

< b-"J' f@)dr'

In fact, we may assume that / 2 0 (replacing / by / - inf"61o,bl/(")

if necessary), which allows us to interpret an equivalent form of (LHH)'

(u - ") 
.-r (*) .*_-# . 8# 

= l,',tdo*,
in terms of areas: the sum of the areas of the triangles PAB, PMA and

pBN (with basis of lengths b - a, /(a) and respectively /(b)) does not

exceeds the area of the subgraph of /. See Figure 1'

using the same geometrical idea, one can prove the following refine'

ment of Proposition 1:
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F'igure,1. A polygonal approximation of the subgraph of a con-
cave function.

Theorem 2. Suppose that K C R' js a compact convex set of posi-

tive volume, with piecewise smooth boundary. Then for every continuous
concave function / : K -- IRa,

# ""p l/ts). fr lu*o(n,r,0K)r(r)0"] =fr f*tolo, s r(nx).

Here Tr)K is the tangent hyperplane at x to the boundary of K and
dS is the (n - I)-dimensional surface measure induced by the Lebesgue

measure.

Corollary L. Under the assumptions of Theorem 2,

#1, o.)* # Iu*o(,*,r,aK) r 
(r)r"] =# f*r {dor 

=r 
(*x).

The next example gives us an idea how good is the estimate offered
by Proposition 1.

Erample 1. Let us consider the function f (q,. . . ,rn) : (rt . . .*n)'/n ,

when restricted to the domain

r45

Dn : {rt,...,rn2 0 I rr +... + rn I L} .
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Fi,gure 9. A hint for the surface integral appearing in Theorem 2'

By a well known formula due to Liouville,

I Ir^P(q* "'rt*)rerr-l'" rn;-1 av

f(pr) :. . r(r4 ft rfu) unr*...*nn-t 4, (LF): 
rppt I ... q 

^1 
1o Y\u) u

(that works for all pr,. . . ,pn ) 0), we easily deduce that the volume of Dn

is 1/n! and

h l"^r(n).v:w)JD-.
Notice that lim,,-* f'(1 + lln) : e-1 : 0.561 46 '.. .

Proposition L yields

1 1 f ...-- 1

d.T t 
ln,l Jo^f @)dv < n+I

which provides a rough estimate of the integral mean of /. Corollary 1"

gives us a much better bound from below. For example, for n:2, it leads

to

o-2s452 < M(f) :YryL : o.26no . ]'
While Theorem L has a finite dimensional character, the Hermite-

Hadamard inequality (HH) can be extended to the context of continuous
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concave functions defined on compact convex sets, not necessarily finite
dimensional. This touches the core of Choquet's theory, a theory that
had at the origin the Krein-Milman theorem. We recall here the following
result due to G. Choquet:

Theorem 3 (G. Cuoquor; see [20] or [22] for details). Suppose
that K is a metrizable compact convex set (in a locally convex Hausdorff
spaceE). ThenthesetExtK of allextremepointsof K isaG5-subsetof K
a,nd for every Borel probability measure p, on K there exists a Borel prob-
ability measure \ on K supported by Ext K (that is, ,\(K \ ExtK) : 0)

such that

I"* * f 
(r) il,(r) s l* r Al dr,@) < f @r") (ch)

for every continuous concave function / : K -- lR.

For convex functions this formula should be reversed.

The point r, represents the barycenter of K according to the mass

distribution given by p,, that is, the unique point c, € K such that

r'(rp): 
I*'"'(r)dp(r)

for every continuous linear functional r' e E'.

In the case of the function h(q,...,rn): (1+ ,r)'/n...(1+ ,n)L/n
(defined on Dn), Proposition 1 gives us

1*- 1 1 f 1

rl,(n+ 1) s w Jo^n(")o' 
< 1 + ;;1'

which is weaker than the estimate offered by Theorem 3:

l+n-,rt/n 1 r 1

n+?<WJo^n(*)a,<1+;i
For n :2, the mean value to be evaluated is

M(h): h lr_h(r)d.v

-- t Ir' 
(Q - 4s/z - r) tfii + mr: 1' 31 8 2'
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Corollary L yields the estimate

t.2175<M(h) < 1.3333

while Theorem 3 yields

r.2761 <M(h)<1.3333.

However, the estimates indicated by Theorem 3 are not always better

than those by Theorem 2 (or even by Corollary 1). See the function that

made the object of Example L.

Theorem 3 has deep applications to many areas of Mathematics such

as Function Algebras, Invariant Measures and Potential Theory. The book

of R. R. PHpt ps [22] contains a good account on this matter.

The connection of Theorem 3 with the field of inequalities made the

object of several papers, including [18], [19], [21]. It is worth to notice that

many interesting inequalities relating weighted means represent averages

orrer the (rn - 1)-dimensional simplex

L*: {(rr,. ..,u*)1ut,...,u*) 0, z1 * ..'*urn:1},

whose extreme points are the "corners" e1 : (1,0,' . ' ,0), . . ' ,

e^: (0,0,.. . ,1).
An easy consequence of Theorem 3 is the following refinement of the

classical Jensen inequalitY:

Theorem 4. Suppose that f is a continuous convex function defined

on a compact convex subsef K of a \ocaL|y convex Hausdorff space E.

Then for every m-tuple (q,...,r*) of elements of K and every Botel

probability measure p, on L*,

(HHr)

Here (tq,... ,w*) denotes the batycenter of A'* with tespect to 1't"

Notice that every point of A- is the barycentet of a Botel ptobability

measure.

The above inequalities should be reverced if f is concave on K '

L.*r) = I o*t (t,*r) o, t|,anr @il
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Among the Borel probability measures on A- we recall here the
Dirichlet nleasure,

f r i " tpry) d,-1...f;:i-L1t- 17-...-r*-L)p^-r d,rr...dr*-t.fkr). ..T(p^) *' "'*m-r &L

In principle, it allows us to refine (via Theorem 4) all Jensen inequalities
associated to the concave functions listed in the Introduction, but we do

not know any practical consequence of this fact.

3. An extension of the Favard-Berwald inequality

A basic ingredient in our extension of the Favard-Berwald inequality

is Green's first id,entity,

I Fu,vu) dv : [ ,! as - [ uLu av,
Jn --1 -' Jan on Ja

which should be regarded as a higher analogue of integration by pa.rts. See

[8]. Actually, we shall need only a special case of it:

Lemma 1. Suppose that Q is a bounded open subsef of lR." with a
Lipschitz bounda,ry, y is a point of Q, and u € C(R) nCr(Q). Then

[ (ru,r -sld,v : -n [ "av * [ ulat,
Jn Ja Jaa dn

where p(r) : Lll" - sll'.

When Cl is a ball Bp(a), the derivative ffi is non-negative at the

boundary of Q. In fact,

0a. / r-a \
o"@: \" - u, 

11" 
_ 

"11)
_llr - all2 - (a - a,n - a), R2 - R_lls - all, 

o.R-R
This remark provides very useful in strengthening inequalities for concave

functions defined on balls.
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A conuer body inlR' is any compact convex subset of lR"with nonempty
interior and a Lipschitz boundary.

The Favard-Berwald inequality represents the case where a :0 and

0 : I of the following result, whose one-dimensional variant was previously
noticed by J. L. BReNNnR and H. Ar,zon [6]:

Theorem 5. If K is a convex body in IR' and f : K ---+ IR+ is a
continuous concave function, then for aII numbers a and p with a ) 0 and
0<p<7,

fa+P @) dv. (cFB)

PRoor'. We may assume that /)0 on IntK and f I AK:O. This
needs to apply a"n approximation argument. Choosing a point p inside K
and a number € € (0, 1), the compact convex set Kr:{(l - e)r * ep I n e Kl
is an e-approximation of K. For each z e AK, we bend the graph of /
along the segment [(l - e)x + ep, x] to get a continuous concave function /,
for which f" I AK : 0. Clearly, supceK t! @) approximates suprE6 IB(r)
and the two integrals which appear in (GFB) a,re approximated by the
corresponding integrals where / is replaced bV /r. A second approximation
argument allows us to assume that / is also Cl-differentiable.

Next step is to notice that f I i" ^ 
concave function. In fact, the

composition g o h of any increasing concave function g with a concave

function h is also concave.

Under the above hypotheses on / and K, for all x,y € K,

fB (") < fP (y) + BfP-r @)(v/(s), r - yl

which yields

f. (s)fB (*) < f"*p (s) * Bfa+e-t(s)(v/(s), r _ a,

- fa*g(r,\ J- B
- r \Yt, ot*V(V f'+P(y),* - gl'

By integrating over g and taking into account Lemma 1, we get

fB(r) l*rU)ou = I*f"+B(y)dv - -!-*, l*\vf"*u(s),a -nldv

)p

a+B
TG+ 1ot

f'(*)dv s I
JK"up 

.f67 [r€K JK
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s l*f*ety)d.v + ffi l*r'*ut )0,

and the conclusion is now clea,r. !
When K : Ba@) is a compact ball in IR.', the above argument yields

a better conclusion:

Corollary 2. It f : Bp(a) -- iR+ is a continuous concave function,
then for all numbersa and B with a ) 0 and0 < B <I wehave

--,J1,^, 
( re ol I r" {olo, + *]-+ p. f, _.f' 

* P {a) (o -,,m) *)
c€Bp(o) \ AIO sn(o)

, a + (n +^r)0 [ f,+B (y) il.- a+p Ja*6.1

A problem which is left open is whether the constant (a + Ol@ +
(n + t)0) in Theorem 5 is the bert possible for each triplet (a, B,n). The
case of the following function

I t {rur2}01"r +c2 ( 1} -+lR, f (rurz) - 1- tL-x2,

shorys that the answer is positive for the triplet (a,L,2). In fact, a simple
computation yields

| * r"*e td ow (:to. rB (*) | * r" at or) : ffi
and

(a+1)(a+2) _ a+p _ (3ct+0+a)G-09
(a+g+1)(a +P+2) a+(2+r)P - (o+30@+P+1)(o+ g+21

varrishes for B - L and approaches 0 as a - oo (whenever 0 < P < l).
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4. A reverse Berwald inequalitY

In this section we show that a revelse Berwald inequality holds true.

The main result is as follows:

Theorem 6. Let K be a convex body inlR' and let f1,..., f* : K --+

IR.. be continuous concave functions a'nd let Ptr. . . ,Prn be non-negative

numbers. Then

Q.L*)r, |"fr_g,{4av

=E lrl.(l,r'o,) 
rr--'t"r *f |.r,"(v)dv'

Consequently, taking into account Theorem L, there exists a pasitive con-

stant C : C(n,ffL,p!,. -. ,prn) such that

'[ (+t I.'r*)= fr l.(#,rr) av (RB)

PROOr'. As in the proof of Theorem 5 we may assume that all the

functions fp arc differentiable and vanish at 0K. Then

fil") - fn(a) 2 (V/r("), r - ul

for all n,A € K and all k : !,...,ffi. By multiplying both sides by

pofin-'(r) we get

p*fp*r(") - p*f?n-r(r)f*@) > (v#*(") ,r - s)

a,nd a further multiplication by |li+r"fft (r) leads us to

,r\-fi ' t*) - or (il r;'r"l) rr--' r x) rr"(s)

= [g 
ri' @)) (Y ror,* (,),, - st.
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Summing side by side these inequalities (over k) and integrating over c we
get

and then integrating over y we arrive at the main inequality in the state-
ment of Theorem 6. The second assertion follows by mathematical induc-

The following result gives us an estimate of the constant C which
appeaxs in Theorem 6, in the particular case where all exponents p7, are

equal to 1. It extends to the context of several variables some inequalities
first noticed by D. C. Banxps [2], S. K.q.RLrN and Z. Zrr'crpr," [14] and

J. L. BnoNNER and H. AlzrR [6] in the case of functions defined on
intervals:

Corollary 3. Let K be a convex body in IR' and let f1,... , f^: K --
IR.' be continuous concave functions. Then

where C (n, L) : L and C (n, m) : 
1n +LZ1 _ 1, a *1 for m ) 2.

Pnoor'. In fact, it suffices to deal with continuous concave functions

fn : K -* lR+, normalized by # [x fnd.V : t. Then the first formula
in Theorem 6 yields a recurrence procedure to compute the constants

C(n,m):

C(n,I): 1 and C(n,m) : -!-, * *C(n,m - t) for m ) 2. tr

We have C(n,2) :21(n * 2), which allows us to retrieve the case

p : q:1 of Barnes' result mentioned in Introduction. The value indicated

(r)dv)rkllo

\ ,,,

c(n,rn)Ll, (* l.r-or) = t, L fr-'r)*
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in Corollary 3 for the constants C(n,rn) is not the best possible. In the
case n : 1, this problem was solved by J. L. BRpNttpR and H. Alzen [6].

An inspection of the argument given in Theorem 6 shows that a better
inequality works if the domain K is a closed ball Bp(a) in IR'. In fact, in
this case

6b lu^r(n ",",) 
dv > c(n,",fi(*t lu^rrr"oor)

. 6;fu*;l I u 

^, 
(1,.,", (' - o' ffi) rt trr''t as) av

For B : [0,1] and m: 2, the last inequality becomes

lo' 
r,n 0,.? (1,',,*) (1,' r*)* W,

which represents a remark made by C. Bonpll to Barnes' inequality.

See [15].
Combining Corollary 3 with inequality (FB) we get:

Proposition 2. (Jnder the assumptions of Corollaty 3, fot K a closed

ball in IR', tle following inequalities hold:

A,L([,.) -
,C(n,m)m/ r
z ffi-[ (;** ]rra. # Iu*o(o'r'0K)rp(n'*])

, C(n,m) !- / \
- (n +1)- oU 

(suP i'(c)J

For certain strings of concave functions it is possible to get a reverse

Berwald inequality (RB) with a much better consta,nt (even with C : l).
In fact according to [12], Theorem D8, if f , g : 10,1l ---+ IR'-. are continuous

and concave, and g(c) : p(I - c), then

F fL fr...
Jo 

v@)f (")d* > 
Jo 

v@)a' Jo 
f {")a''
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Particularly, this happens if rp is sinpnn or *p(l - x)P, fot p € (0,1].
A similar phenomenon occurs in higher dimensions, for functions on balls.

Since the proof of Theorems 5 and 6 depends on Green's formula,
their extension to the context of weighted Lebesgue measure is unclear.
The interested reader may find weighted inverse Roger-Holder inequalities
(for functions of a real variable) in the pap€rs of R. W. BeRNeRo and J.
Wplm [1], and L. MaltcnANDA, J. E. Pncenri and L.-E. PpnssoN [16].

5. Berwald type inequalities for superharmonic
functions

A natural higher dimensional generalization of the notion of concave

function is that of a superharmonic function. Given an open subset O of
Rt, & function z: f,) -+ R is said tobe superharTnonic if for every closed

ball B in O and every harmonic function h : B --+ IR with u L h on 0B
we have u 3 h on B. See L. HonuaxooR [11] for a nice account on this
subject.

We may wonder if the results in the preceding sections extend to the
framework of superharmonic functions. Simple examples such as

f (r,y) - 1- (rt +a')" ,

for (r,g) in the unit ball of R2 and a e (0,1), shows that the Favard-
Berwald inequality (FB) does not work. However the result of Theorem 1

has a partial extension which will be detailed here. For convenience we

shall restrict to the case of smooth functions u € C(R) n C2(O) defined on

convex bodies 0 in R".
Consider the Green kernel G(*,y) associated with -A on O. The

solution u € C(O) n C2(O) of the Dirichlet problem

(5.1)

where / e .Ll(Q), and / ) 0, can be represented as

I-o"-/onQ
\z | 0Q :0,

u(n): Ir"@,ilf 
(a)dv. (5.2)
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By varying /, the set of all such functions u constitutes a subcone 6?lf (O),
of the convex cone E?l+(CI) of all superharmonic functions which are non-
negative on O. The maximum principle for elliptic operators assures that
z ) 0 (and the same is true for G). See [8].

Theorem 7. Assume that 0 <, < l- ( s and

C : C(r,si F,u)

:;:g 
l(I,"r.,a)"ar'@))''" I (l,G@,s)'dv("1)"'] ' -,

where p, and v are two Borel probability measurcs on Q, Then

Uru,(n)d,1t(n))"' = " (lru'p1a,61)'/' (5.3)

for every u e 511[ (A) and the constant C : C (r, s; p,u) is sharp.
If p, and u ate absolutely -continuous with respect to the Lebesgue

measure on {1, then the inequality (5.3) extends (by density) to the whole

cone S'11+(Q).

Pnoor. We use the representatio;r formula (5.2). Then, by applying
the Rogers-Holder inequality, the Fubini theorem and finally the Minkow-
ski inequality, we get

fnu'(r)d,u@) 
: 

Inu'-r(n) (lrrr",alf @dv) dp@)

: 
lr(lrG(r, 

y)u'-l raap@) r (y) dv

= Ir(lrG@,s)'d,1t(.)) 
. (lr"u-r"' (r)d,1t@))''"' r(r) o,

= " (lru"(r)d,1t(r))''' lr(lr"r,,s), au@))''' ,(il ou
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and the proof of (S.a) is done. The fact that C : C(r,s;p,u) is sharp
follows by considering the case of functions u(r) : G(r,A), for gr e e
arbitrarily fixed. tr

Remark /. The result of Theorem 7 is valid for every function u rep-
resentable via non-negative kernels by formulae of the type (b.2), with /
continuous and non-negative.

Remarlc 2. Suppose that L Sr 4 s < oo. Then

(ln "oror(")) < c(t,siu,u) 
lnu@)d,u(r)

< c (1, si p, u) (ln' Oror("))

for every u e SIlt(A) (rrrd even for every 5?l+(0), if p and z are ab-
solutely continuous with respect to the Lebesgue measure on Q), but the
constant C(L, s; 1t,u) may not be the best possible.

The problem with Theorem 7 is that the Green kernel is knovrn in
compact form only in few ca^ses, for examples, for balls (but even then it
is diffcult to be handled). For O : (a, b), the Green kernel is

G(',Y) : {''n - d'lu-- "!' ira ( s t t 1 b'

' t@-a)(b-Y), ifo( rlslb
a^nd thus for dp,(r) : dv(r): dtl@ - a) we have

C (r, s; dn / (b - a), dn / (b - a))

:,?l?u 
l(1,"r", 

d" ar,@)'' " I (l,G(r, v)' d,u(",) "']

: (r* L)t/, / (s+r;1/".

This allows us to recover Berwald's inequality in the range 0 < r < 1 <
s ( €, for continuous concave functions of a real variable. Even more,
the technique of Green's kernel allows us to write down discrcte Berutald
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inequali,ti,es for concave sequences aot att . . . , an of non-negative numbers.
The property of being concaae means

L2ap- ap-2apa1*ay1;210

for all k : 0,... ,n - 2. Again, the main problem is that of best con-
stants. This is known in few cases, including the following one, which was
circulated in the 80's:

# n*- (ffid)"'(r+ n"r)'''
for all concave sequences ao,att, . . ,an of non-negative numbers. See D. C.
BaRNes [3] for a companion inequality involving two concave sequences.

Saddles to say, nothing is known in the several variable case.
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